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1. Introduction

In the low-energy limit string theory with D-branes gives rise to noncommutative field

theory on the branes when the string propagates in a nontrivial NS-NS two-form (B-field)

background [1 – 4]. In particular, if the open string has N=2 worldsheet supersymmetry,

the tree-level target space dynamics is described by a noncommutative self-dual Yang-

Mills (SDYM) theory in 2+2 dimensions [5]. Furthermore, open N=2 strings in a B-field

background induce on the worldvolume of n coincident D2-branes a noncommutative Yang-

Mills-Higgs Bogomolny-type system in 2+1 dimensions which is equivalent to a noncom-

mutative generalization [6] of the modified U(n) chiral model known as the Ward model [7].

The topological nature of N=2 strings and the integrability of their tree-level dynamics [8]

render this noncommutative sigma model integrable.1

Being integrable, the commutative U(n≥2) Ward model features a plethora of exact

scattering and no-scattering multi-soliton and wave solutions, i.e. time-dependent stable

configurations on R
2. These are not only a rich testing ground for physical properties such

as adiabatic dynamics or quantization, but also descend to more standard multi-solitons

of various integrable systems in 2+0 and 1+1 dimensions, such as sine-Gordon, upon

dimensional and algebraic reduction. There is a price to pay however: Nonlinear sigma

models in 2+1 dimensions may be Lorentz-invariant or integrable but not both [7, 11].

In fact, Derrick’s theorem prohibits the existence of stable solitons in Lorentz-invariant

scalar field theories above 1+1 dimensions. A Moyal deformation, however, overcomes

this hurdle, but of course replaces Lorentz invariance by a Drinfeld-twisted version. There

is another gain: The deformed Ward model possesses not only deformed versions of the

1For discussing some other noncommutative integrable models see e.g. [9, 10] and references therein.
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just-mentioned multi-solitons, but in addition allows for a whole new class of genuinely

noncommutative (multi-)solitons, in particular for the U(1) group [12, 13]! Moreover, this

class is related to the generic but perturbatively constructed noncommutative scalar-field

solitons [14, 15] by an infinite-stiffness limit of the potential [16].

In [12, 13] and [17]–[20] families of multi-solitons as well as their reduction to solitons of

the noncommutative sine-Gordon equations were described and studied. In the nonabelian

case both scattering and nonscattering configurations were obtained. For static configura-

tions the issue of their stability was analyzed [21]. The full moduli space metric for the

abelian model was computed and its adiabatic two-soliton dynamics was discussed [16].

Recall that the critical N=2 string theory has a four-dimensional target space, and

its open string effective field theory is self-dual Yang-Mills [8], which gets deformed non-

commutatively in the presence of a B-field [5]. Conversely, the noncommutative SDYM

equations are contained [19] in the equations of motion of N=2 string field theory (SFT) [22]

in a B-field background. This SFT formulation is based on the N=4 topological string

description [23]. It is well known that the SDYM model can be described in terms of holo-

morphic bundles over (an open subset of) the twistor space2 [26] CP 3 and the topological

N=4 string theory contains twistors from the outset. The Lax pair, integrability and the

solutions to the equations of motion by twistor and dressing methods were incorporated

into the N=2 open SFT in [27, 28]. However, this theory reproduces only bosonic SDYM

theory, its symmetries (see e.g. [29 – 31]) and integrability properties. It is natural to ask:

What string theory can describe supersymmetric SDYM theory [32, 33] in four dimensions?

There are some proposals [33 – 36] for extending N=2 open string theory (and its

SFT) to be space-time supersymmetric. Moreover, it was shown by Witten [37] that N=4

supersymmetric SDYM theory appears in twistor string theory, which is a B-type open

topological string with the supertwistor space CP 3|4 as a target space.3 Note that N<4

SDYM theory forms a BPS subsector of N -extended super Yang-Mills theory, and N=4

SDYM can be considered as a truncation of the full N=4 super Yang-Mills theory [37]. It

is believed [43, 39] that twistor string theory is related with the previous proposals [33 – 36]

for a Lorentz-invariant supersymmetric extension of N=2 (and topological N=4) string

theory which also leads to the N=4 SDYM model.

A dimensional reduction of the above relations between twistor strings and N=4 super

Yang-Mills and SDYM models was considered in [44 – 47]. The corresponding twistor string

theory after this reduction is the topological B-model on the mini-supertwistor space P2|4.

In [47] it was shown that the 2N=8 supersymmetric extension of the Bogomolny-type

model in 2+1 dimensions is equivalent to an 2N=8 supersymmetric modified U(n) chiral

model on R
2,1. The subject of the current paper is an 2N≤8 version of the above super-

symmetric Bogomolny-type Yang-Mills-Higgs model in signature (−++), its relation with

an N -extended supersymmetric modified integrable U(n) chiral model (to be defined) in

2+1 dimensions and the Moyal-type noncommutative deformation of this chiral model. We

go on to explicitly construct multi-soliton configurations on noncommutative R
2,1 for the

2For reviews of twistor theory see, e.g., the books [24, 25].
3For other variants of twistor string models see [38 – 40]. For recent reviews providing a twistor descrip-

tion of super Yang-Mills theory, see [41, 42] and references therein.
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corresponding supersymmetric sigma model field equations. By studying the scattering

properties of the constructed configurations, we prove their asymptotic factorization with-

out scattering for large times. We also briefly discuss a D-brane interpretation of these

soliton configurations from the viewpoint of twistor string theory.

2. Supersymmetric Bogomolny model in 2 + 1 dimensions

2.1 N -extended SDYM equations in 2 + 2 dimensions

Space R
2,2. Let us consider the four-dimensional space R

2,2 = (R4, g) with the metric

ds2 = gµνdxµdxν = det(dxαα̇) = dx11̇dx22̇ − dx21̇dx12̇ (2.1)

with (gµν) = diag(−1,+1,+1,−1), where µ, ν, . . . = 1, . . . , 4 are space-time indices and

α = 1, 2, α̇ = 1̇, 2̇ are spinor indices. We choose the coordinates4

(xµ) = (xa, t̃) = (t, x, y, t̃) with a, b, . . . = 1, 2, 3 , (2.2)

and the signature (− + +−) allows us to introduce real isotropic coordinates (cf. [19, 6])

x11̇ =
1

2
(t − y) , x12̇ =

1

2
(x + t̃) , x21̇ =

1

2
(x − t̃) , x22̇ =

1

2
(t + y) . (2.3)

SDYM. Recall that the SDYM equations for a field strength tensor Fµν on R
2,2 read

1

2
εµνρσF ρσ = Fµν , (2.4)

where εµνρσ is a completely antisymmetric tensor on R
2,2 and ε1234 = 1. In the coordi-

nates (2.3) we have the decomposition

F
αα̇,ββ̇

= ∂αα̇A
ββ̇

− ∂
ββ̇

Aαα̇ + [Aαα̇, A
ββ̇

] = εαβ F
α̇β̇

+ ε
α̇β̇

Fαβ (2.5)

with

F
α̇β̇

:= −1

2
εαβF

αα̇,ββ̇
and Fαβ := −1

2
εα̇β̇F

αα̇,ββ̇
, (2.6)

where εαβ is antisymmetric, εαβεβγ = δγ
α, and similar for εα̇β̇, with ε12 = ε1̇2̇ = 1. The

gauge potential (Aαα̇) will appear in the covariant derivative

D
αβ̇

= ∂
αβ̇

+ [A
αβ̇

, · ] . (2.7)

In spinor notation, (2.4) is equivalently written as

F
α̇β̇

= 0 ⇔ F
αα̇,ββ̇

= ε
α̇β̇

Fαβ . (2.8)

Solutions {Aαα̇} to these equations form a subset (a BPS sector) of the solution space of

Yang-Mills theory on R
2,2.

4Our conventions are chosen to match those of [12] after reduction to the space R
2,1 with coordinates

(t, x, y).
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N -extended SDYM in component fields. The field content of N -extended super

SDYM is5

N = 0 Aαα̇ (2.9a)

N = 1 Aαα̇, χi
α with i = 1 (2.9b)

N = 2 Aαα̇, χi
α, φ[ij] with i, j = 1, 2 (2.9c)

N = 3 Aαα̇, χi
α, φ[ij], χ̃

[ijk]
α̇ with i, j, k = 1, 2, 3 (2.9d)

N = 4 Aαα̇, χi
α, φ[ij], χ̃

[ijk]
α̇ , G

[ijkl]

α̇β̇
with i, j, k, l = 1, 2, 3, 4 . (2.9e)

Here (Aαα̇, χi
α, φ[ij], χ̃

[ijk]
α̇ , G

[ijkl]

α̇β̇
) are fields of helicities (+1,+1

2 , 0,−1
2 ,−1). These fields

obey the field equations of the N = 4 SDYM model, namely [33, 37]

F
α̇β̇

= 0 , (2.10a)

Dαα̇χiα = 0 , (2.10b)

Dαα̇Dαα̇φij + 2{χiα, χj
α} = 0 , (2.10c)

Dαα̇χ̃α̇[ijk] − 6[χ[i
α, φjk]] = 0 , (2.10d)

D γ̇
α G

[ijkl]

γ̇β̇
+ 12{χ[i

α, χ̃
jkl]

β̇
} − 18[φ[ij ,D

αβ̇
φkl]] = 0 . (2.10e)

Note that the N < 4 SDYM field equations are governed by the first N+1 equations

of (2.10), where F
α̇β̇

= 0 is counted as one equation and so on.

2.2 Superfield formulation of N -extended SDYM

Superspace R
4|4N . Recall that in the space R

2,2 = (R4, g) with the metric g given

in (2.1) one may introduce purely real Majorana-Weyl spinors6 θα and ηα̇ of helicities

+1
2 and −1

2 as anticommuting (Grassmann-algebra) objects. Using 2N such spinors with

components θiα and ηα̇
i for i = 1, . . . ,N , one can define the N -extended superspace R

4|4N

and the N -extended supersymmetry algebra generated by the supertranslation operators

Pαα̇ = ∂αα̇ , Qiα = ∂iα − ηα̇
i ∂αα̇ and Qi

α̇ = ∂i
α̇ − θiα∂αα̇ , (2.11)

where

∂αα̇ :=
∂

∂xαα̇
, ∂iα :=

∂

∂θiα
and ∂i

α̇ :=
∂

∂ηα̇
i

. (2.12)

The commutation relations for the generators (2.11) read

{Qiα, Qj
α̇} = −2δj

i Pαα̇ , [Pαα̇, Qiβ] = 0 and [Pαα̇, Qi
β̇
] = 0 . (2.13)

To rewrite equations of motion in terms of R
4|4N superfields one uses the additional

operators

Diα = ∂iα + ηα̇
i ∂αα̇ and Di

α̇ = ∂i
α̇ + θiα∂αα̇ , (2.14)

5We use symmetrization (·) and antisymmetrization [·] of k indices with weight 1

k!
, e.g. [ij] = 1

2!
(ij− ji).

6Note that in Minkowski signature the Weyl spinor θα is complex and ηα̇ = εα̇β̇ηβ̇ = θα is complex

conjugate to θα. For the Kleinian (split) signature 2 + 2, however, these spinors are real and independent

of one another.
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which (anti)commute with the operators (2.11) and satisfy

{Diα,Dj

β̇
} = 2δj

i Pαβ̇ , [Pαα̇,Diβ ] = 0 and [Pαα̇,Dj

β̇
] = 0 . (2.15)

Antichiral superspace R
4|2N . On the superspace R

4|4N one may introduce tensor fields

depending on bosonic and fermionic coordinates (superfields), differential forms, Lie deriva-

tives LX etc.. Furthermore, on any such superfield A one can impose the constraint

equations LDiα
A = 0, which for a scalar superfield f reduce to the so-called antichirality

conditions

Diαf = 0 . (2.16)

These are easily solved by using a coordinate transformation on R
4|4N ,

(xαα̇, ηα̇
i , θiα) → (x̃αα̇ = xαα̇−θiαηα̇

i , ηα̇
i , θiα) , (2.17)

under which ∂αα̇,Diα and Di
α̇ transform to the operators

∂̃αα̇ = ∂αα̇ , D̃iα = ∂iα and D̃i
α̇ = ∂i

α̇ + 2θiα∂αα̇ . (2.18)

Then (2.16) simply means that f is defined on a sub-superspace R
4|2N ⊂ R

4|4N with

coordinates

x̃αα̇ and ηα̇
i . (2.19)

This space is called antichiral superspace. In the following we will usually omit the tildes

when working on the antichiral superspace.

N -extended SDYM in superfields. The N -extended SDYM equations can be rewrit-

ten in terms of superfields on the antichiral superspace R
4|2N [33, 48]. Namely, for any

given 0 ≤ N ≤ 4, fields of a proper multiplet from (2.9) can be combined into superfields

Aαα̇ and Ai
α̇ depending on xαα̇, ηα̇

i ∈ R
4|2N and giving rise to covariant derivatives

∇αα̇ := ∂αα̇ + Aαα̇ and ∇i
α̇ := ∂i

α̇ + Ai
α̇ . (2.20)

In such terms the N -extended SDYM equations (2.10) read

[∇αα̇,∇ββ̇ ]+[∇αβ̇,∇βα̇] = 0 , [∇i
α̇,∇ββ̇]+[∇i

β̇
,∇βα̇] = 0 , {∇i

α̇,∇j

β̇
}+{∇i

β̇
,∇j

α̇} = 0 ,

(2.21)

which is equivalent to

[∇αα̇,∇
ββ̇

] = ε
α̇β̇

Fαβ , [∇i
α̇,∇

ββ̇
] = ε

α̇β̇
F i

β and {∇i
α̇,∇j

β̇
} = ε

α̇β̇
F ij ,

(2.22)

where F ij is antisymmetric and Fαβ is symmetric in their indices.

The above gauge potential superfields (Aαα̇, Ai
α̇) as well as the gauge strength su-

perfields (Fαβ , F i
α, F ij) contain all physical component fields of the N -extended SDYM

model. For instance, the lowest component of the triple (Fαβ , F i
α, F ij) in an η-expansion

is (Fαβ , χi
α, φij), with zeros in case N is too small. By employing Bianchi identities for

the gauge strength superfields, one successively obtains [48] the superfield expansions and

the field equations (2.10) for all component fields.

– 5 –
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It is instructive to extend the antichiral combination in (2.18) to potentials and co-

variant derivatives,
D̃i

α̇ = ∂i
α̇ + 2 θiα ∂αα̇

+ + +

Ãi
α̇ := Ai

α̇ + 2 θiα Aαα̇

‖ ‖ ‖
∇̃i

α̇ := ∇i
α̇ + 2 θiα ∇αα̇

(2.23)

where ∇αα̇, ∇i
α̇ and D̃i

α̇ are given by (2.20) and (2.18), while Ai
α̇ and Aαα̇ depend on xαα̇

and ηα̇
i only. With the antichiral covariant derivatives, one may condense (2.21) or (2.22)

into the single set

{∇̃i
α̇, ∇̃j

β̇
} + {∇̃i

β̇
, ∇̃j

α̇} = 0 ⇔ {∇̃i
α̇, ∇̃j

β̇
} = εα̇β̇ F̃ ij , (2.24)

with F̃ ij = F ij +4 θ[iαF j]
α +4 θiαθjβFαβ . The concise form (2.24) of the N -extended SDYM

equations is quite convenient, and we will use it interchangeable with (2.21).

Linear system for N -extended SDYM. It is well known that the superfield SDYM

equations (2.21) can be seen as the compatibility conditions for the linear system of differ-

ential equations

ζ α̇(∂αα̇ + Aαα̇)ψ = 0 and ζ α̇(∂i
α̇ + Ai

α̇)ψ = 0 , (2.25)

where (ζ
β̇
) =

(

1
ζ

)

and ζ α̇ = εα̇β̇ζ
β̇
. The extra (spectral) parameter7 ζ lies in the extended

complex plane C ∪∞ = CP 1. Here ψ is a matrix-valued function depending not only on

xαα̇ and ηα̇
i but also (meromorphically) on ζ ∈ CP 1. We subject the n×n matrix ψ to the

following reality condition:

ψ(xαα̇, ηα̇
i , ζ)

[

ψ(xαα̇, ηα̇
i , ζ̄)

]†
= 1l , (2.26)

where “†” denotes hermitian conjugation and ζ̄ is complex conjugate to ζ. This condition

guarantees that all physical fields of the N -extended SDYM model will take values in the

adjoint representation of the algebra u(n). In the concise form the linear system (2.25) is

written as

ζ α̇(∇i
α̇ + 2θiα∇αα̇)ψ = 0 ⇔ ζ α̇(D̃i

α̇ + Ãi
α̇)ψ = 0 ⇔ ζ α̇ ∇̃i

α̇ ψ = 0 .

(2.27)

2.3 Reduction of N -extended SDYM to 2 + 1 dimensions

The supersymmetric Bogomolny-type Yang-Mills-Higgs equations in 2+1 dimensions are

obtained from the described N -extended super SDYM equations by a dimensional reduction

R
2,2 → R

2,1. In particular, for the N=0 sector we demand the components Aµ of a gauge

potential to be independent of x4 and put A4 =: ϕ. Here, ϕ is a Lie-algebra valued

7The parameter ζ is related with λ used in [45] by the formula ζ = i 1−λ

1+λ
(cf. e.g. [31]).

– 6 –
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scalar field in three dimensions (the Higgs field) which enters into the Bogomolny-type

equations. Similarly, for N ≥ 1 one can reduce the N -extended SDYM equations on R
2,2

by imposing the ∂4-invariance condition on all the fields (Aαα̇, χi
α, φ[ij], χ̃

[ijk]
α̇ , G

[ijkl]

α̇β̇
) from

the N=4 supermultiplet or its truncation to N<4 and obtain supersymmetric Bogomolny-

type equations on R
2,1.

Spinors in R
2,1. Recall that on R

2,2 both N=4 SDYM theory and full N=4 super

Yang-Mills theory have an SL(4, R) ∼= Spin(3,3) R-symmetry group [33]. A dimensional

reduction to R
2,1 enlarges the supersymmetry and R-symmetry to 2N=8 and Spin(4,4),

respectively, for both theories (cf. [49] for Minkowski signature). More generally, any

number N of supersymmetries gets doubled to 2N in the reduction. Since dimensional

reduction collapses the rotation group Spin(2,2) ∼= Spin(2,1)L×Spin(2,1)R of R
2,2 to its

diagonal subgroup Spin(2,1)D as the local rotation group of R
2,1, the distinction between

undotted and dotted indices disappears. We shall use undotted indices henceforth.

Coordinates and derivatives in R
2,1. The above discussion implies that one can rela-

bel the bosonic coordinates xαβ̇ from (2.3) by xαβ and split them as

xαβ =
1

2
(xαβ + xβα) +

1

2
(xαβ − xβα) = x(αβ) + x[αβ] (2.28)

into antisymmetric and symmetric parts,

x[αβ] =
1

2
εαβx4 =

1

2
εαβ t̃ and x(αβ) =: yαβ , (2.29)

respectively, with

y11 = x11 =
1

2
(t − y) , y12 =

1

2
(x12 + x21) =

1

2
x , y22 = x22 =

1

2
(t + y) . (2.30)

We also have θiα 7→ θiα and ηα̇
i 7→ ηα

i for the fermionic coordinates on R
4|4N reduced

to R
3|4N .

Bosonic coordinate derivatives reduce in 2+1 dimensions to the operators

∂(αβ) =
1

2
(∂αβ + ∂βα) (2.31)

which read explicitly as

∂(11) =
∂

∂y11
= ∂t−∂y , ∂(12) = ∂(21) =

1

2

∂

∂y12
= ∂x , ∂(22) =

∂

∂y22
= ∂t+∂y .

(2.32)

We thus have
∂

∂xαβ
= ∂(αβ) − εαβ∂4 = ∂(αβ) − εαβ∂t̃ , (2.33)

where ε12 = −ε21 = −1, ∂4 = ∂/∂x4 and ∂t̃ = ∂/∂t̃.

The operators Diα and Di
α̇ acting on t̃-independent superfields reduce to

Diα = ∂iα + ηβ
i ∂(αβ) and Di

α = ∂i
α + θiβ∂(αβ) , (2.34)

where ∂iα = ∂/∂θiα and ∂i
α = ∂/∂ηα

i . Similarly, the antichiral operators D̃iα and D̃i
α̇

in (2.18) become

D̂iα = ∂iα and D̂i
α = ∂i

α + 2θiβ∂(αβ) . (2.35)

– 7 –
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Supersymmetric Bogomolny-type equations in component fields. According

to (2.33), the components A
αβ̇

of a gauge potential in four dimensions split into the com-

ponents A(αβ) of a gauge potential in three dimensions and a Higgs field A[αβ] = −εαβ ϕ,

i.e.

Aαβ = A(αβ) + A[αβ] = A(αβ) − εαβ ϕ . (2.36)

Then the covariant derivatives D
αβ̇

reduced to three dimensions become the differential

operators

Dαβ − εαβ ϕ = ∂(αβ) + [A(αβ), · ] − εαβ [ϕ, · ] , (2.37)

and the Yang-Mills field strength on R
2,1 decomposes as

Fαβ, γδ = [Dαβ , Dγδ] = εαγ fβδ + εβδ fαγ with fαβ = fβα . (2.38)

Substituting (2.36) and (2.37) into (2.10), i.e. demanding that all fields in (2.10) are

independent of x4 = t̃, we obtain the following supersymmetric Bogomolny-type equations

on R
2,1:

fαβ + Dαβϕ = 0 , (2.39a)

Dαβ χiβ + εαβ [ϕ, χiβ] = 0 , (2.39b)

Dαβ Dαβφij + 2[ϕ, [ϕ, φij ]] + 2{χiα, χj
α} = 0 , (2.39c)

Dαβ χ̃β[ijk] − εαβ [ϕ, χ̃β[ijk]] − 6[χ[i
α, φjk]] = 0 , (2.39d)

D γ
α G

[ijkl]
γβ +[ϕ,G

[ijkl]
αβ ]+12{χ[i

α, χ̃
jkl]
β }−18[φ[ij ,Dαβφkl]]−18εαβ [φ[ij, [φkl], ϕ]] = 0 . (2.39e)

Supersymmetric Bogomolny-type equations in terms of superfields. Transla-

tions generated by the vector field ∂4 = ∂t̃ are isometries of superspaces R
4|4N and R

4|2N .

By taking the quotient with respect to the action of the abelian group G generated by

∂4, we obtain the reduced full superspace R
3|4N ∼= R

4|4N/G and the reduced antichiral

superspace R
3|2N ∼= R

4|2N/G. In the following, we shall work on R
3|2N and R

3|2N × CP 1,

since the reduced ψ-function from (2.25) and (2.27) is defined on the latter space.

The linear system stays in the center of the superfield approach to the N -extended

SDYM equations. After imposing t̃-independence on all fields in the linear system (2.27),

we arrive at the linear equations

ζα ∇̂i
α ψ ≡ ζα(D̂i

α + Âi
α)ψ = 0 (2.40)

of the same form but with

D̂i
α = ∂i

α + 2θiβ∂(αβ) and Âi
α = Ai

α + 2θiβ(A(αβ) − εαβΞ) , (2.41)

where Ai
α, A(αβ) and Ξ are superfields depending on yαβ and ηα

i only. These linear equa-

tions expand again to the pair (cf. (2.25))

ζβ(∂(αβ) + A(αβ) − εαβΞ)ψ = 0 and ζα(∂i
α + Ai

α)ψ = 0 . (2.42)
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The compatibility conditions for the linear system (2.40) read

{∇̂i
α, ∇̂j

β} + {∇̂i
β, ∇̂j

α} = 0 ⇔ {∇̂i
α, ∇̂j

β} = εαβ F̂ ij (2.43)

and present a condensed form of (2.39) rewritten in terms of R
3|2N superfields. Similarly,

these equations can also be written in more expanded forms analogously to (2.21) or using

the superfield analog of (2.37). However, we will not do this since all these sets of equations

are equivalent.

3. Noncommutative N -extended U(n) chiral model in 2+1 dimensions

As has been known for some time, nonlinear sigma models in 2 + 1 dimensions may

be Lorentz-invariant or integrable but not both [7, 11]. We will show that the super

Bogomolny-type model discussed in section 2 after a gauge fixing is equivalent to a su-

per extension of the modified U(n) chiral model (so as to be integrable) first formulated

by Ward [7]. Since integrability is compatible with noncommutative deformation (if in-

troduced properly, see e.g. [9]–[20]) we choose from the beginning to formulate our super

extension of this chiral model on Moyal-deformed R
2,1 with noncommutativity parame-

ter θ ≥ 0. Ordinary space-time R
2,1 can always be restored by taking the commutative

limit θ → 0.

Star-product formulation. Classical field theory on noncommutative spaces may be

realized in a star-product formulation or in an operator formalism.8 The first approach is

closer to the commutative field theory: it is obtained by simply deforming the ordinary

product of classical fields (or their components) to the noncommutative star product

(f ⋆ g)(x) = f(x) exp{ i

2

←−
∂a θab −→

∂b} g(x) ⇒ xa ⋆ xb − xb ⋆ xa = iθab (3.1)

with a constant antisymmetric tensor θab. Specializing to R
2,1, we use real coordinates

(xa) = (t, x, y) in which the Minkowski metric g on R
3 reads (gab) = diag(−1,+1,+1)

with a, b, . . . = 1, 2, 3 (cf. section 2). It is straightforward to generalize the Moyal defor-

mation (3.1) to the superspaces introduced in the previous section, allowing in particular

for non-anticommuting Grassmann-odd coordinates. Deferring general superspace defor-

mations and their consequences to future work, we here content ourselves with the simple

embedding of the “bosonic” Moyal deformation into superspace, meaning that (3.1) is also

valid for superfields f and g depending on Grassmann variables θiα and ηα
i .

For later use we consider not only isotropic coordinates and vector fields

u :=
1

2
(t+y) = y22 , v :=

1

2
(t−y) = y11 , ∂u = ∂t + ∂y = ∂(22) , ∂v = ∂t − ∂y = ∂(11)

(3.2)

introduced in section 2, but also the complex combinations

z := x + iy , z̄ := x − iy , ∂z =
1

2
(∂x − i∂y) , ∂z̄ =

1

2
(∂x + i∂y) . (3.3)

8See [50] for reviews on noncommutative field theories.
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Since the time coordinate t remains commutative, the only nonvanishing component of the

noncommutativity tensor θab is

θxy = −θyx =: θ > 0 ⇒ θzz̄ = −θz̄z = −2i θ . (3.4)

Hence, we have

z ⋆ z̄ = zz̄ + θ and z̄ ⋆ z = zz̄ − θ (3.5)

as examples of the general formula (3.1).

Operator formalism. The nonlocality of the star products renders explicit computation

cumbersome. We therefore pass to the operator formalism, which trades the star product

for operator-valued spatial coordinates (x̂, ŷ) or their complex combinations (ẑ, ˆ̄z), subject

to

[t, x̂] = [t, ŷ] = 0 but [x̂, ŷ] = iθ ⇒ [ẑ, ˆ̄z] = 2 θ . (3.6)

The latter equation suggests the introduction of annihilation and creation operators,

a =
1√
2θ

ẑ and a† =
1√
2θ

ˆ̄z with [a , a†] = 1 , (3.7)

which act on a harmonic-oscillator Fock space H with an orthonormal basis { |ℓ〉, ℓ =

0, 1, 2, . . .} such that

a |ℓ〉 =
√

ℓ |ℓ−1〉 and a† |ℓ〉 =
√

ℓ+1 |ℓ+1〉 . (3.8)

Any superfield f(t, z, z̄, ηα
i ) on R

3|2N can be related to an operator-valued superfield

f̂(t, ηα
i ) ≡ F (t, a, a†, ηα

i ) on R
1|2N acting in H, with the help of the Moyal-Weyl map

f(t, z, z̄, ηα
i ) 7→ f̂(t, ηα

i ) = Weyl-ordered f
(

t,
√

2θa,
√

2θa†, ηα
i

)

. (3.9)

The inverse transformation recovers the ordinary superfield,

f̂(t, ηα
i ) ≡ F (t, a, a†, ηα

i ) 7→ f(t, z, z̄, ηα
i ) = F⋆

(

t,
z√
2θ

,
z̄√
2θ

, ηα
i

)

, (3.10)

where F⋆ is obtained from F by replacing ordinary with star products. Under the Moyal-

Weyl map, we have

f ⋆ g 7→ f̂ ĝ and
∫

dx dy f = 2π θ Trf̂ = 2π θ
∑

ℓ≥0

〈ℓ|f̂ |ℓ〉 , (3.11)

and the spatial derivatives are mapped into commutators,

∂zf 7→ ∂̂z f̂ = − 1√
2θ

[a†, f̂ ] and ∂z̄f 7→ ∂̂z̄ f̂ =
1√
2θ

[a , f̂ ] . (3.12)

For notational simplicity we will from now on omit the hats over the operators except when

confusion may arise.
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Gauge fixing for ψ. Note that the linear system (2.40) and the compatibility condi-

tions (2.43) are invariant under a gauge transformation

ψ 7→ ψ′ = g−1ψ , (3.13a)

A 7→ A′ = g−1A g + g−1∂ g (with appropriate indices) , (3.13b)

Ξ 7→ Ξ′ = g−1Ξ g , (3.13c)

where g = g(xa, ηα
i ) is a U(n)-valued superfield globally defined on the deformed superspace

R
3|2N
θ ×CP 1. Using a gauge transformation of the form (3.13), we can choose ψ such that

it will satisfy the standard asymptotic conditions (see e.g. [51])

ψ = Φ−1 + O(ζ) for ζ → 0 , (3.14a)

ψ = 1l + ζ−1Υ + O(ζ−2) for ζ → ∞ , (3.14b)

where the U(n)-valued function Φ and u(n)-valued function Υ depend on xa and ηα
i . This

“unitary” gauge is compatible with the reality condition for ψ,

ψ(xa, ηα
i , ζ)

[

ψ(xa, ηα
i , ζ̄)

]†
= 1l , (3.15)

obtained by reduction from (2.26).

Gauge fixing for Âi
α. After fixing the unitary gauge (3.14) for ψ and inserting (ζα) =

(

ζ
−1

)

in the linear system (2.40), one can easily reconstruct the superfield given in (2.41)

from Φ or Υ via

Âi
1 = 0 and Âi

2 = Φ−1D̂i
2Φ = D̂i

1Υ (3.16)

and thus fix a gauge for the superfields Âi
α. The operators D̂i

α were defined in (2.35). One

can express (3.16) in terms of Ai
α and A(αβ) − εαβΞ as

Ai
1 = 0 and Ai

2 = Φ−1∂i
2Φ = pai

1Υ , (3.17)

A(11) = 0 and A(12) + Ξ = Φ−1∂(12)Φ = ∂(11)Υ , (3.18)

A(21) − Ξ = 0 and A(22) = Φ−1∂(22)Φ = ∂(12)Υ . (3.19)

Using (2.32), we can rewrite the nonzero components as

A := Φ−1∂uΦ = ∂xΥ , B := Φ−1∂xΦ = ∂vΥ , Ci := Φ−1∂i
2Φ = ∂i

1Υ . (3.20)

Recall that the superfields Φ and Υ depend on xa and ηα
i .

Linear system. In the above-introduced unitary gauge the linear system (2.42) reads

(ζ∂x − ∂u −A)ψ = 0 , (ζ∂v − ∂x − B)ψ = 0 , (ζ∂i
1 − ∂i

2 − Ci)ψ = 0 , (3.21)

which adds the last equation to the linear system of the Ward model [7] and generalizes it

to superfields A(xa, ηα
j ), B(xa, ηα

j ) and Ci(xa, ηα
j ). The concise form of (3.21) reads

(

ζ D̂i
1 − D̂i

2 − Âi
2

)

ψ = 0 (3.22)

or, in more explicit form,
[

ζ
(

∂i
1 + 2θi1∂v + 2θi2∂x

)

−
(

∂i
2 + Ci + 2θi1(∂x + B) + 2θi2(∂u + A)

)

]

ψ = 0 . (3.23)
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N -extended sigma model. The compatibility conditions of this linear system are the

N -extended noncommutative sigma model equations

D̂i
1(Φ

−1D̂j
2 Φ) + D̂j

1(Φ
−1D̂i

2 Φ) = 0 (3.24)

which in expanded form reads

(gab + vcε
cab) ∂a(Φ

−1∂bΦ) = 0 ⇔ ∂x(Φ−1∂xΦ) − ∂v(Φ
−1∂uΦ) = 0 , (3.25a)

∂i
1(Φ

−1∂xΦ) − ∂v(Φ
−1∂i

2Φ) = 0 , ∂i
1(Φ

−1∂uΦ) − ∂x(Φ−1∂i
2Φ) = 0 , (3.25b)

∂i
1(Φ

−1∂j
2Φ) + ∂j

1(Φ
−1∂i

2Φ) = 0 . (3.25c)

Here, the first line contains the Wess-Zumino-Witten term with a constant vector (vc) =

(0, 1, 0) which spoils the standard Lorentz invariance but yields an integrable chiral model

in 2+1 dimensions. Recall that Φ is a U(n)-valued matrix whose elements act as operators

in the Fock space H and depend on xa and 2N Grassmann variables ηα
i . As discussed in

section 2, the compatibility conditions of the linear equations (3.22) (or (3.21)) are equiv-

alent to the N -extended Bogomolny-type equations (2.39) for the component (physical)

fields. Thus, chiral model field equations (3.25) are equivalent to a gauge fixed form of

equations (2.39).

Υ-formulation. Instead of Φ-parametrization of (A,B, Ci) given in (3.17)–(3.20) we may

use the equivalent Υ-parametrization also given there. In this case, the compatibility

conditions for the linear system (3.21) reduce to

(∂2
x − ∂u∂v)Υ + [∂vΥ , ∂xΥ] = 0 , (3.26a)

(∂i
2∂v − ∂i

1∂x)Υ + [∂i
1Υ , ∂vΥ] = 0 , (∂i

2∂x − ∂i
1∂u)Υ + [∂i

1Υ , ∂xΥ] = 0 , (3.26b)

(∂i
2∂

j
1 + ∂j

2∂
i
1)Υ + {∂i

1Υ , ∂j
1Υ} = 0 , (3.26c)

which in concise form read

(D̂i
2 D̂j

1 + D̂j
2 D̂i

1)Υ + {D̂i
1Υ , D̂j

1Υ} = 0 . (3.27)

Recall that Υ is a u(n)-valued matrix whose elements act as operators in the Fock space H
and depend on xa and 2N Grassmann variables ηα

i .

For N=4, the commutative limit of (3.27) can be considered as Siegel’s equation [33]

reduced to 2+1 dimensions. According to Siegel, one can extract the multiplet of physical

fields appearing in (2.39) from the prepotential Υ via

∂i
1Υ = Ai

2 , ∂i
1∂

j
1Υ = φij , ∂i

1∂
j
1∂

k
1Υ = χ̃

[ijk]
2 , ∂i

1∂
j
1∂

k
1∂l

1Υ = G
[ijkl]
22 , (3.28a)

∂(α1)Υ = A(α2) − εα2ϕ , ∂(α1)∂
i
1Υ = χi

α , ∂(α1)∂(β1)Υ = fαβ , (3.28b)

where one takes Υ and its derivatives at η2
i = 0. The other components of the physical

fields, i.e. χ̃
[ijk]
1 , G

[ijkl]
11 , G

[ijkl]
21 , A(11) and A(21)−ϕ, vanish in this light-cone gauge.
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Supersymmetry transformations. The 4N supercharges given in (2.11) reduce in 2+1

dimensions to the form

Qiα = ∂iα − ηβ
i ∂(αβ) and Qi

α = ∂i
α − θiβ∂(αβ) . (3.29)

Their antichiral version, matching to D̂iα and D̂j
β of (2.35), reads

Q̂iα = ∂iα − 2ηβ
i ∂(αβ) and Q̂j

β = ∂j
β , (3.30)

so that

{Q̂iα , Q̂j
β} = −2 δj

i ∂(αβ) . (3.31)

On a (scalar) R
3|2N superfield Σ these supersymmetry transformations act as

δ̂ Σ := εiαQ̂iαΣ + εα
i Q̂i

αΣ (3.32)

and are induced by the coordinate shifts

δ̂ yαβ = −2εi(αη
β)
i and δ̂ ηα

i = εα
i , (3.33)

where εiα and εα
i are 4N real Grassmann parameters. It is easy to see that our equa-

tions (3.24) and (3.27) are invariant under the supersymmetry transformations (3.32) (ap-

plied to Φ or Υ). This is simply because the operators D̂iα and D̂j
β anticommute with the

supersymmetry generators Q̂iα and Q̂j
β. Therefore, the equations of motion (3.25) of the

modified N -extended chiral model in 2+1 dimensions as well as their reductions to 2+0 and

1+1 dimensions carry 2N supersymmetries and are genuine supersymmetric extensions of

the corresponding bosonic equations. Note that this type of extension is not the standard

one since the R-symmetry groups are Spin(N ,N ) in 2+1 and Spin(N ,N )× Spin(N ,N ) in

1+1 dimensions, which differ from the compact unitary R-symmetry groups of standard

sigma models. Contrary to the standard case of two-dimensional sigma models the above

“noncompact” 2N supersymmetries do not impose any constraints on the geometry of the

target space, e.g. they do not demand it to be Kähler [52] or hyper-Kähler [53]. This may

be of interest and deserves further study.

Action functionals. In either formulation of the N -extended supersymmetric SDYM

model on R
2,2 there are difficulties with finding a proper action functional generalizing the

one [54, 55] for the purely bosonic case. These difficulties persist after the reduction to 2+1

dimensions, i.e. for the equations (3.25) and (3.26) describing our supersymmetric modified

U(n) chiral model. It is the price to be paid for overcoming the no-go barrier N ≤ 4 and

the absence of geometric target-space constraints. On a more formal level, the problem

is related to the chiral character of (3.24) as well as (3.27), where only the operators D̂i
α

but not D̂iα appear. Note however, that for N = 4 one can write an action functional in

component fields producing the equations (2.39), which are equivalent to the superspace

equations (3.24) when i, j = 1, . . . , 4 (see e.g. [47]).
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One proposal for an action functional stems from Siegel’s idea [33] for the Υ-formulation

of the N -extended SDYM equations. Namely, one sees that ∂i
2Υ enters only linearly into

the last two lines in (3.26). Therefore, if we introduce

Υ(1) := Υ|η2
i =0 (3.34)

then it must satisfy the first equation from (3.26), and the remaining equations iteratively

define the dependence of Υ on η2
i starting from Υ(1). Hence, all information is contained

in Υ(1), as can also be seen from (3.28). In other words, the dependence of Υ on η2
i is not

‘dynamical’. For an action one can then take (cf. [33])

S =

∫

d3x dN η1
{

Υ(1)∂(αβ)∂
(αβ)Υ(1) +

2

3
Υ(1) εαβ∂(α1)Υ(1) ∂(β1)Υ(1)

}

. (3.35)

Extremizing this functional yields the first line of (3.26) at η2
i = 0. Except for the Grass-

mann integration, this action has the same form as the purely bosonic one [55]. One may

apply the same logic to the Φ-formulation where the action for the purely bosonic case is

also known [54, 56].

4. N -extended multi-soliton configurations via dressing

The existence of the linear system (3.22) (equivalent to (3.21)) encoding solutions of the

N -extended U(n) chiral model in an auxiliary matrix ψ allows for powerful methods to

systematically construct explicit solutions for ψ and hence for Φ† = ψ|ζ=0 and Υ =

lim
ζ→∞

ζ (ψ−1l). For our purposes the so-called dressing method [57, 51] proves to be the

most practical [12]–[20], and so we shall use it here for our linear system, i.e. already in

the N -extended noncommutative case.

Multi-pole ansatz for ψ. The dressing method is a recursive procedure for generating

a new solution from an old one. More concretely, we rewrite the linear system (3.21) in

the form

ψ(∂u − ζ∂x)ψ
† = A , ψ(∂x − ζ∂v)ψ

† = B , ψ(∂i
2 − ζ∂i

1)ψ
† = Ci . (4.1)

Recall that ψ† := (ψ(xa, ηα
i , ζ̄))† and (A,B, Ci) depend only on xa and ηα

i . The central idea

is to demand analyticity in the spectral parameter ζ, which strongly restricts the possible

form of ψ. One way to exploit this constraint starts from the observation that the left

hand sides of (4.1) as well as of the reality condition (3.15) do not depend on ζ while ψ

is expected to be a nontrivial function of ζ globally defined on CP 1. Therefore, it must

be a meromorphic function on CP 1 possessing some poles which we choose to lie at finite

points with constant coordinates µk ∈ CP 1.

Here we will build a (multi-soliton) solution ψm featuring m simple poles at positions

µ1, . . . , µm with9 Im µk < 0 by left-multiplying an (m−1)-pole solution ψm−1 with a single-

pole factor of the form

1l +
µm − µ̄m

ζ − µm
Pm(xa, ηα

i ) , (4.2)

9This condition singles out solitons over anti-solitons, which appear for Imµk > 0.

– 14 –



J
H
E
P
0
6
(
2
0
0
7
)
0
6
5

where the n×n matrix function Pm is yet to be determined. Starting from the trivial

(vacuum) solution ψ0 = 1l, the iteration ψ0 7→ ψ1 7→ . . . 7→ ψm yields a multiplicative

ansatz for ψm,

ψm =

m−1
∏

ℓ=0

(

1l +
µm−ℓ − µ̄m−ℓ

ζ − µm−ℓ
Pm−ℓ

)

, (4.3)

which, via partial fraction decomposition, may be rewritten in the additive form

ψm = 1l +

m
∑

k=1

ΛmkS†
k

ζ − µk
, (4.4)

where Λmk and Sk are some n×rk matrices depending on xa and ηα
i , with rk ≤ n.

Equations for Sk. Let us first consider the additive parametrization (4.4) of ψm. This

ansatz must satisfy the reality condition (3.15) as well as our linear equations in the

form (4.1). In particular, the poles at ζ = µ̄k on the left hand sides of these equations have

to be removable since the right hand sides are independent of ζ. Inserting the ansatz (4.4)

and putting to zero the corresponding residues, we learn from (3.15) that

(

1l +

m
∑

ℓ=1

ΛmℓS
†
ℓ

µ̄k − µℓ

)

Sk = 0 , (4.5)

while from (4.1) we obtain the differential equations

(

1l +
m

∑

ℓ=1

ΛmℓS
†
ℓ

µ̄k − µℓ

)

L̄A,B,i
k Sk = 0 , (4.6)

where L̄A,B,i
k stands for either

L̄A
k = ∂u − µ̄k∂x , L̄B

k = µk(∂x − µ̄k∂v) or L̄i
k = ∂i

2 − µ̄k∂
i
1 . (4.7)

Note that we consider a recursive procedure starting from m=1, and operators (4.7) will

appear with k = 1, . . . ,m if we consider poles at ζ = µ̄k.

Because the L̄A,B,i
k for k = 1, . . . ,m are linear differential operators, it is easy to

write down the general solution for (4.6) at any given k, by passing from the coordinates

(u, v, x; η1
i , η2

i ) to “co-moving coordinates” (wk, w̄k, sk; η
i
k, η̄

i
k). The precise relation for k =

1, . . . ,m is [12, 58]

wk := x+µ̄ku+µ̄−1
k v = x+

1

2
(µ̄k−µ̄−1

k )y+
1

2
(µ̄k+µ̄−1

k )t and ηi
k := η1

i +µ̄kη
2
i , (4.8)

with w̄k and η̄i
k obtained by complex conjugation and the co-moving time sk being inessen-

tial because by definition nothing will depend on it. The kth moving frame travels with a

constant velocity

(vx , vy)k = −
(

µk + µ̄k

µkµ̄k + 1
,

µkµ̄k − 1

µkµ̄k + 1

)

, (4.9)
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so that the static case wk=z is recovered for µk = −i. On functions of (wk, η
i
k, w̄k, η̄

i
k) alone

the operators (4.7) act as

L̄A
k = L̄B

k = (µk−µ̄k)
∂

∂w̄k

=: L̄k and L̄i
k = (µk−µ̄k)

∂

∂η̄i
k

. (4.10)

By induction in k = 1, . . . ,m we learn that, due to (4.5), a necessary and sufficient condition

for a solution of (4.6) is

L̄kSk = SkZ̃k and L̄i
kSk = SkZ̃

i
k (4.11)

with some rk×rk matrices Z̃k and Z̃i
k depending on (wk, w̄k, η

j
k, η̄j

k).

Passing to the noncommutative bosonic coordinates we obtain

[

ŵk , ˆ̄wk

]

= 2θ νkν̄k with νkν̄k =
4i

µk − µ̄k − µ−1
k + µ̄−1

k

. (4.12)

Thus, we can introduce annihilation and creation operators

ck =
1√
2θ

ŵk

νk
and c†k =

1√
2θ

ˆ̄wk

ν̄k
so that [ck , c†k] = 1 (4.13)

for k = 1, . . . ,m. Naturally, this Heisenberg algebra is realized on a “co-moving” Fock

space Hk, with basis states |ℓ〉k and a “co-moving” vacuum |0〉k subject to ck|0〉k = 0. Each

co-moving vacuum |0〉k (annihilated by ck) is related to the static vacuum |0〉 (annihilated

by a) through an ISU(1,1) squeezing transformation (cf. [12]) which is time-dependent.

The fermionic coordinates ηi
k and η̄i

k remain spectators in the deformation. Coordinate

derivatives are represented in the standard fashion as

νk

√
2θ

∂

∂wk

7→ −[c†k , · ] and ν̄k

√
2θ

∂

∂w̄k

7→ [ck , · ] . (4.14)

After the Moyal deformation, the n×rk matrices Sk have become operator-valued, but

are still functions of the Grassmann coordinates ηi
k and η̄i

k. The noncommutative version

of the BPS conditions (4.11) naturally reads

ck Sk = Sk Zk and
∂

∂η̄i
k

Sk = Sk Zi
k (4.15)

where Zk and Zi
k are some operator-valued rk×rk matrix functions of ηj

k and η̄j
k.

Nonabelian solutions for Sk. For general data Zk and Zi
k it is difficult to solve (4.15),

but it is also unnecessary because the final expression ψm turns out not to depend on them.

Therefore, we conveniently choose

Zk = ck ⊗ 1lrk×rk
and Zi

k = 0 ⇒ Sk = Rk(ck, η
i
k) , (4.16)

where Rk is an arbitrary n×rk matrix function independent of c†k and η̄i
k.

10 It is known

that nonabelian (multi-) solitons arise for algebraic functions Rk (cf. e.g. [7] for the com-

mutative and [12] for the noncommutative N=0 case). Their common feature is a smooth

10Changing Zk or Zi
k multiplies Rk by an invertible factor from the right, which drops out later, except

for the degenerate case Zk=0 which yields Sk = Rk |0〉k〈0|k.
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commutative limit. The only novelty of the supersymmetric extension is the ηi
k dependence,

i.e.

Rk = Rk,0 + ηi
kRk,i + ηi

kη
j
kRk,ij + ηi

kη
j
kη

p
kRk,ijp + ηi

kη
j
kη

p
kη

q
kRk,ijpq . (4.17)

Abelian solutions for Sk. It is useful to view Sk as a map from C
rk ⊗Hk to C

n ⊗Hk

(momentarily suppressing the η dependence). The noncommutative setup now allows us

to generalize the domain of this map to any subspace of C
n ⊗Hk. In particular, we may

choose it to be finite-dimensional, say C
qk , and represent the map by an n×qk array |Sk〉

of kets in H. In this situation, Zk and Zi
k in (4.15) are just number -valued qk×qk matrix

functions of ηj
k and η̄j

k. In case they do not depend on η̄j
k, we can write down the most

general solution as

|Sk〉 = Rk(ck, η
j
k) |Zk〉 exp

{
∑

iZ
i
k(η

j
k) η̄i

k

}

with |Zk〉 := exp
{

Zk(η
j
k) c†k

}

|0〉k .

(4.18)

As before, we may put Zi
k = 0 without loss of generality, but now the choice of Zk does

matter.

For any given k generically there exists a qk-dimensional basis change which diagonal-

izes the ket-valued matrix

|Zk〉 7→ diag
(

eα1
k
c†, eα2

k
c† , . . . , eα

qk
k

c†
)

|0〉k = diag
(

|α1
k〉 , |α2

k〉 , . . . , |αqk

k 〉
)

, (4.19)

where we defined coherent states

|αl
k〉 := eαl

k
c†|0〉k so that ck |αl

k〉 = αl
k |αl

k〉 for l = 1, . . . , qk and αl
k ∈ C .

(4.20)

Note that not only the entries of Rk but also the αl
k are holomorphic functions of the

co-moving Grassmann parameters ηj
k and thus can be expanded like in (4.17). In the U(1)

model, we must use ket-valued 1×qk matrices |Sk〉 for all k, yielding rows

|Sk〉 =
(

R1
k |α1

k〉 , R2
k |α2

k〉 , . . . , Rqk

k |αqk

k 〉
)

for k = 1, . . . ,m , (4.21)

with functions αl
k(η

j
k). Here, the Rl

k only affect the states’ normalization and can be

collected in a diagonal matrix to the right, hence will drop out later and thus may all be

put to one. Formally, we have recovered the known abelian (multi-) soliton solutions, but

the supersymmetric extension has generalized |Sk〉 → |Sk(η
j
k)〉.

Explicit form of Pk. Let us now consider the multiplicative parametrization (4.3) of

ψm which also allows us to solve (4.5). First of all, note that the reality condition (3.15) is

satisfied if

Pk = P †
k = P 2

k ⇔ Pk = Tk (T †
kTk)

−1T †
k for k = 1, . . . ,m , (4.22)

meaning that Pk is an operator-valued hermitian projector (of group-space rank rk ≤ n)

built from an n×rk matrix function Tk (the abelian case of n=1 is included). The reality

condition follows just because
(

1l +
µk − µ̄k

ζ − µk

Pk

)(

1l +
µ̄k − µk

ζ − µ̄k

Pk

)

= 1l for any ζ and k = 1, . . . ,m . (4.23)
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The rk columns of Tk span the image of Pk and obey

Pk Tk = Tk ⇔ (1l−Pk)Tk = 0 . (4.24)

Furthermore, the equation (4.5) with m = k (induction) rewritten in the form

(1l−Pk)

k−1
∏

ℓ=1

(

1l +
µk−ℓ − µ̄k−ℓ

µ̄k − µk−ℓ
Pk−ℓ

)

Sk = 0 (4.25)

reveals that (cf. (4.24))

T1 = S1 and Tk =

{k−1
∏

ℓ=1

(

1l − µk−ℓ − µ̄k−ℓ

µk−ℓ − µ̄k
Pk−ℓ

)}

Sk for k ≥ 2 , (4.26)

where the explicit form of Sk for k = 1, . . . ,m is given in (4.16) or (4.18). The final result

reads

ψm =

m−1
∏

ℓ=0

(

1l +
µm−ℓ − µ̄m−ℓ

ζ − µm−ℓ
Pm−ℓ

)

= 1l +

m
∑

k=1

ΛmkS
†
k

ζ − µk
(4.27)

with hermitian projectors Pk given by (4.22), Tk given by (4.26) and Sk given by (4.16)

or (4.18). The explicit form of Λmk (which we do not need) can be found in [12]. The

corresponding superfields Φ and Υ are

Φm = ψ†
m|ζ=0 =

m
∏

k=1

(1l − ρkPk) with ρk = 1 − µk

µ̄k
, (4.28a)

Υm = lim
ζ→∞

ζ (ψm − 1l) =

m
∑

k=1

(µk−µ̄k)Pk . (4.28b)

From (4.22) it is obvious that Pk is invariant under a similarity transformation

Tk 7→ Tk Λk ⇔ Sk 7→ Sk Λk (4.29)

for an invertible operator-valued rk×rk matrix Λk. This justifies putting Zi
k = 0 from the

beginning and also the restriction to Zk = ck⊗1lrk×rk
in the nonabelian case, both without

loss of generality. Hence, the nonabelian solution space constructed here is parametrized

by the set {Rk}m
1 of matrix-valued functions of ck and ηi

k and the pole positions µk. The

abelian moduli space, however, is larger by the set {Zk}m
1 of matrix-values functions of ηi

k

which generically contain the coherent-state parameter functions {αl
k(η

i
k)}. Restricting to

ηi
k=0 reproduces the soliton configurations of the bosonic model [12].

Static solutions. Let us consider the reduction to 2+0 dimensions, i.e. the static case.

Recall that static solutions correspond to the choice m = 1 and µ1 ≡ µ = −i implying

w1 = z, so we drop the index k. Specializing (4.27), we have

ψ = 1l − 2 i

ζ + i
P so that Φ = Φ† = 1l− 2P , (4.30)
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where a hermitian projector P of group-space rank r satisfies the BPS equations

(1l−P ) aP = 0 ⇒ (1l−P ) aT = 0 , (4.31a)

(1l−P )
∂

∂η̄i
P = 0 ⇒ (1l−P )

∂

∂η̄i
T = 0 , (4.31b)

with P = T (T †T )−1T † and ηi = η1
i + iη2

i . In this case T = S, and for a nonabelian r=1

projector P we get T = T (a, ηi) as an n×1 column. For the simplest case of N=1 we just

have (cf. [59])

T = Te(a) + η To(a) with η = η1 + iη2 , (4.32)

where Te(a) and To(a) are rational functions of a (e.g. polynomials) taking values in the

even and odd parts of the Grassmann algebra. Similarly, an abelian N=1 projector (for

n=1) is built from

|T 〉 =
(

|α1〉 , |α2〉 , . . . , |αq〉
)

. (4.33)

At θ=0, the static solution (4.32) of our supersymmetric U(n) sigma model is also

a solution of the standard N=1 supersymmetric CPn−1 sigma model in two dimensions

(see e.g. [59]).11 For this reason, one can overcome the previously mentioned difficulty

with constructing an action (or energy from the viewpoint of 2+1 dimensions) for static

configurations. Moreover, on solutions obeying the BPS conditions (4.31) the topological

charge

Q = 2πθ

∫

dη1dη2 Tr tr Φ
{

D+Φ ,D−Φ
}

(4.34)

is proportional to the action (BPS bound)

S = 2πθ

∫

dη1dη2 Tr tr
[

D+Φ ,D−Φ
]

(4.35)

and is finite for algebraic functions Te and To. Here, the standard superderivatives D± are

defined as

D+ =
∂

∂η
+ iη ∂z and D− =

∂

∂η̄
+ iη̄ ∂z̄ . (4.36)

One-soliton configuration. For one moving soliton, from (4.27) and (4.28) we obtain

ψ1 = 1l +
µ − µ̄

ζ − µ
P with P = T (T †T )−1T † (4.37)

and

Φ = 1l − ρP with ρ = 1 − µ

µ̄
. (4.38)

Now our n×r matrix T must satisfy (putting Zi = 0 and Z = c ⊗ 1lr×r)

[c , T ] = 0 and
∂

∂η̄i
T = 0 with ηi = η1

i + µ̄ η2
i , (4.39)

where c is the moving-frame annihilation operator given by (4.13) for k=1.

11In fact, Φ in (4.30) takes values in the Grassmannian Gr(r, n), and Gr(1, n) = CP n−1.
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Recall that the operators c and c† and therefore the matrix T and the projector P can

be expressed in terms of the corresponding static objects by a unitary squeezing transfor-

mation (see e.g. (4.8) and (4.13)). For simplicity we again consider the case N=1 and a

nonabelian projector with r=1. Then (4.39) tells us that T is a holomorphic function of c

and η, i.e.

T = Te(c) + η To(c) =

( T 1
e (c) + η T 1

o (c)
...

T n
e (c) + η T n

o (c)

)

(4.40)

with polynomials T a
e and T a

o of order q, say, analogously to the static case (4.32). Note that,

for T a
o to be Grassmann-odd and nonzero, some extraneous Grassmann parameter must

appear. Similarly, abelian projectors for a moving one-soliton obtain by subjecting (4.33)

to a squeezing transformation.

For N=1 the moving frame was defined in (4.8) (dropping the index k) via

w = x +
1

2
(µ̄−µ̄−1)y +

1

2
(µ̄+µ̄−1)t and η = η1 + µ̄η2 hence ∂tη = 0 .

(4.41)

Consider the moving frame with the coordinates (w, w̄, s; η, η̄) with the choice s = t and

the related change of the derivatives (see [12, 58])

∂x = ∂w + ∂w̄ , (4.42a)

∂y =
1

2
(µ̄−µ̄−1) ∂w +

1

2
(µ−µ−1) ∂w̄ , (4.42b)

∂t =
1

2
(µ̄+µ̄−1) ∂w +

1

2
(µ+µ−1) ∂w̄ + ∂s , (4.42c)

∂η1 = ∂η + ∂η̄ , (4.42d)

∂η2 = µ̄ ∂η + µ ∂η̄ . (4.42e)

In the moving frame our solution (4.38) is static, i.e. ∂sΦ = 0, and the projector P has

the same form as in the static case. The only difference is the coefficient ρ instead of 2

in (4.38). Therefore, by computing the action (4.35) in (w, w̄; η1, η2) coordinates, we obtain

for algebraic functions T in (4.40) a finite answer, which differs from the static one by a

kinematical prefactor depending on µ (cf. [12] for the bosonic case).

Large-time asymptotics. Note that in the distinguished (z, z̄, t) coordinate

frame (4.41) implies that at large times w → κ t with κ = 1
2(µ̄+µ̄−1). As a consequence,

the tq term in each polynomial in (4.40) will dominate, i.e.

T → tq
( a1 + η b1...

an + η bn

)

=: tq Γ , (4.43)

where Γ is a fixed vector in C
n. It is easy to see that in the distinguished frame the

large-time limit of Φ given by (4.38) is

lim
t→±∞

Φ = 1l − ρΠ with Π = Γ (Γ†Γ)−1Γ† (4.44)

being the projector on the constant vector Γ.
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Consider now the m-soliton configuration (4.28). By induction of the above argument

one easily arrives at the m-soliton generalization of (4.44). Namely, in the frame moving

with the ℓth lump we have

lim
t→±∞

Φm = (1l−ρ1Π1) . . . (1l−ρℓ−1Πℓ−1)(1l−ρℓPℓ)(1l−ρℓ+1Πℓ+1) . . . (1l−ρmΠm) , (4.45)

where the Πm are constant projectors. This large-time factorization of multi-soliton solu-

tions provides a proof of the no-scattering property because the asymptotic configurations

are identical for large negative and large positive times.

5. Conclusions

In this paper we introduced a generalization of the modified integrable U(n) chiral model

with 2N≤ 8 supersymmetries in 2+1 dimensions and considered a Moyal deformation of

this model. It was shown that this N -extended chiral model is equivalent to a gauge-fixed

BPS subsector of an N -extended super Yang-Mills model in 2+1 dimensions originating

from twistor string theory. The dressing method was applied to generate a wide class

of multi-soliton configurations, which are time-dependent finite-energy solutions to the

equations of motion. Compared to the N=0 model, the supersymmetric extension was

seen to promote the configurations’ building blocks to holomorphic functions of suitable

Grassmann coordinates. By considering the large-time asymptotic factorization into a

product of single soliton solutions we have shown that no scattering occurs within the

dressing ansatz chosen here.

The considered model does not stand alone but is motivated by twistor string the-

ory [37] with a target space reduced to the mini-supertwistor space [44, 45, 47]. In this

context, the obtained multi-soliton solutions are to be regarded as D(0|2N )-branes moving

inside D(2|2N )-branes [60]. Here 2N appears due to fermionic worldvolume directions of

our branes in the superspace description [60]. Switching on a constant B-field simply de-

forms the sigma model and D-brane worldvolumes noncommutatively, thereby admitting

also regular supersymmetric noncommutative abelian solutions.

Restricting to static configurations, the models can be specialized to Grassmannian

supersymmetric sigma models, where the superfield Φ takes values in Gr(r, n), and the

field equations are invariant under 2N supersymmetry transformations with 0 ≤ N ≤ 4.

This differs from the results for standard 2D sigma models [52, 53] where the target spaces

have to be Kähler or hyper-Kähler for admitting two or four supersymmetries, respectively.

This difference will be discussed in more details elsewhere.

We derived the supersymmetric chiral model in 2+1 dimensions through dimen-

sional reduction and gauge fixing of the N -extended supersymmetric SDYM equations

in 2+2 dimensions. Recall that for the purely bosonic case most (if not all) integrable

equations in three and fewer dimensions can be obtained from the SDYM equations (or

their hierarchy [25]) by suitable dimensional reductions (see e.g. [61]–[65] and references

therein). Moreover, this Ward conjecture [61] was extended to the noncommutative case

(see e.g. [66, 67]). It will be interesting to consider similar reductions of the N -extended
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supersymmetric SDYM equations (and their hierarchy [68]) to supersymmetric integrable

equations in three and two dimensions generalizing earlier results [69].
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[22] N. Berkovits, SuperPoincaré invariant superstring field theory, Nucl. Phys. B 450 (1995) 90

[Erratum ibid. 459 (1996) 439] [hep-th/9503099].

[23] N. Berkovits and C. Vafa, N = 4 topological strings, Nucl. Phys. B 433 (1995) 123

[hep-th/9407190];

H. Ooguri and C. Vafa, All loop N = 2 string amplitudes, Nucl. Phys. B 451 (1995) 121

[hep-th/9505183].

[24] R.S. Ward and R.O. Wells, Twistor geometry and field theory, Cambridge University Press,

Cambridge (1990).

[25] L.J. Mason and N.M.J. Woodhouse, Integrability, self-duality, and twistor theory, Oxford

University Press, Oxford (1996).

[26] R.S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977) 81.

[27] O. Lechtenfeld and A.D. Popov, On the integrability of covariant field theory for open N = 2

strings, Phys. Lett. B 494 (2000) 148 [hep-th/0009144];

O. Lechtenfeld, A.D. Popov and S. Uhlmann, Exact solutions of Berkovits’ string field theory,

Nucl. Phys. B 637 (2002) 119 [hep-th/0204155].

[28] A. Kling, O. Lechtenfeld, A.D. Popov and S. Uhlmann, On nonperturbative solutions of

superstring field theory, Phys. Lett. B 551 (2003) 193 [hep-th/0209186]; Solving string field

equations: new uses for old tools, Fortschr. Phys. 51 (2003) 775 [hep-th/0212335];

A. Kling and S. Uhlmann, String field theory vertices for fermions of integral weight, JHEP

07 (2003) 061 [hep-th/0306254];

M. Ihl, A. Kling and S. Uhlmann, String field theory projectors for fermions of integral

weight, JHEP 03 (2004) 002 [hep-th/0312314];

S. Uhlmann, A note on kappa-diagonal surface states, JHEP 11 (2004) 003

[hep-th/0408245].

[29] L.-L. Chau, M.-L. Ge and Y.-S. Wu, Noether currents and algebraic structure of the hidden

symmetry for superchiral fields, Phys. Rev. D 25 (1982) 1080;

L. Dolan, A new symmetry group of real self-dual Yang-Mills, Phys. Lett. B 113 (1982) 387;

– 23 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C233%2C355
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C233%2C355
http://arxiv.org/abs/hep-th/0103256
http://jhep.sissa.it/stdsearch?paper=06%282006%29028
http://arxiv.org/abs/hep-th/0604219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA35%2C6281
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA35%2C6281
http://arxiv.org/abs/hep-th/0203269
http://jhep.sissa.it/stdsearch?paper=06%282002%29055
http://arxiv.org/abs/hep-th/0204185
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA18%2C4889
http://arxiv.org/abs/hep-th/0211263
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB705%2C477
http://arxiv.org/abs/hep-th/0406065
http://jhep.sissa.it/stdsearch?paper=03%282005%29045
http://arxiv.org/abs/hep-th/0412001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB450%2C90
http://arxiv.org/abs/hep-th/9503099
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB433%2C123
http://arxiv.org/abs/hep-th/9407190
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB451%2C121
http://arxiv.org/abs/hep-th/9505183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CA61%2C81
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB494%2C148
http://arxiv.org/abs/hep-th/0009144
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB637%2C119
http://arxiv.org/abs/hep-th/0204155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB551%2C193
http://arxiv.org/abs/hep-th/0209186
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C51%2C775
http://arxiv.org/abs/hep-th/0212335
http://jhep.sissa.it/stdsearch?paper=07%282003%29061
http://jhep.sissa.it/stdsearch?paper=07%282003%29061
http://arxiv.org/abs/hep-th/0306254
http://jhep.sissa.it/stdsearch?paper=03%282004%29002
http://arxiv.org/abs/hep-th/0312314
http://jhep.sissa.it/stdsearch?paper=11%282004%29003
http://arxiv.org/abs/hep-th/0408245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD25%2C1080
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB113%2C387


J
H
E
P
0
6
(
2
0
0
7
)
0
6
5

L.-L. Chau, M.-L. Ge, A. Sinha and Y.-S. Wu, Hidden symmetry algebra for the self-dual

Yang-Mills equation, Phys. Lett. B 121 (1983) 391;

L. Crane, Action of the loop group on the self-dual Yang-Mills equation, Commun. Math.

Phys. 110 (1987) 391.

[30] A.D. Popov and C.R. Preitschopf, Extended conformal symmetries of the self-dual Yang-Mills

equations, Phys. Lett. B 374 (1996) 71 [hep-th/9512130];

T.A. Ivanova, On current algebra of symmetries of the self-dual Yang-Mills equations, J.

Math. Phys. 39 (1998) 79 [hep-th/9702144];

A.D. Popov, Self-dual Yang-Mills: symmetries and moduli space, Rev. Math. Phys. 11 (1999)

1091 [hep-th/9803183]; Holomorphic Chern-Simons-Witten theory: from 2D to 4D

conformal field theories, Nucl. Phys. B 550 (1999) 585 [hep-th/9806239].

[31] T.A. Ivanova and O. Lechtenfeld, Hidden symmetries of the open N = 2 string, Int. J. Mod.

Phys. A 16 (2001) 303 [hep-th/0007049].

[32] A.M. Semikhatov, Supersymmetric instanton, Phys. Lett. B 120 (1983) 171;

I.V. Volovich, Super-self-duality for supersymmetric Yang-Mills theory, Phys. Lett. B 123

(1983) 329.

[33] W. Siegel, The N = 2, N = 4 string is self-dual N = 4 Yang-Mills, Phys. Rev. D 46 (1992)

3235 [hep-th/9205075].

[34] W. Siegel, The N = 4 string is the same as the N = 2 string, Phys. Rev. Lett. 69 (1992) 1493

[hep-th/9204005]; Green-Schwarz formulation of self-dual superstring, Phys. Rev. D 47

(1993) 2512 [hep-th/9210008].

[35] N. Berkovits and W. Siegel, Covariant field theory for self-dual strings, Nucl. Phys. B 505

(1997) 139 [hep-th/9703154].

[36] S. Bellucci, A. Galajinsky and O. Lechtenfeld, A heterotic N = 2 string with space-time

supersymmetry, Nucl. Phys. B 609 (2001) 410 [hep-th/0103049].

[37] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math.

Phys. 252 (2004) 189 [hep-th/0312171].

[38] N. Berkovits, An alternative string theory in twistor space for N = 4 super-Yang-Mills, Phys.

Rev. Lett. 93 (2004) 011601 [hep-th/0402045];

N. Berkovits and L. Motl, Cubic twistorial string field theory, JHEP 04 (2004) 056

[hep-th/0403187].

[39] W. Siegel, Untwisting the twistor superstring, hep-th/0404255;

O. Lechtenfeld and A.D. Popov, Supertwistors and cubic string field theory for open N = 2

strings, Phys. Lett. B 598 (2004) 113 [hep-th/0406179].

[40] I.A. Bandos, J.A. de Azcarraga and C. Miquel-Espanya, Superspace formulations of the

(super)twistor string, JHEP 07 (2006) 005 [hep-th/0604037];

M. Abou-Zeid, C.M. Hull and L.J. Mason, Einstein supergravity and new twistor string

theories, hep-th/0606272;

L. Dolan and P. Goddard, Tree and loop amplitudes in open twistor string theory,

hep-th/0703054.

[41] A.D. Popov and C. Saemann, On supertwistors, the Penrose-Ward transform and N = 4

super Yang-Mills theory, Adv. Theor. Math. Phys. 9 (2005) 931 [hep-th/0405123];

A.D. Popov and M. Wolf, Hidden symmetries and integrable hierarchy of the N = 4

supersymmetric Yang-Mills equations, hep-th/0608225.

– 24 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB121%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C110%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C110%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB374%2C71
http://arxiv.org/abs/hep-th/9512130
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C39%2C79
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C39%2C79
http://arxiv.org/abs/hep-th/9702144
http://arxiv.org/abs/hep-th/9803183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB550%2C585
http://arxiv.org/abs/hep-th/9806239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA16%2C303
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA16%2C303
http://arxiv.org/abs/hep-th/0007049
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB120%2C171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB123%2C329
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB123%2C329
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C3235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C3235
http://arxiv.org/abs/hep-th/9205075
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C69%2C1493
http://arxiv.org/abs/hep-th/9204005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C2512
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C2512
http://arxiv.org/abs/hep-th/9210008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB505%2C139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB505%2C139
http://arxiv.org/abs/hep-th/9703154
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB609%2C410
http://arxiv.org/abs/hep-th/0103049
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C252%2C189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C252%2C189
http://arxiv.org/abs/hep-th/0312171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C011601
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C93%2C011601
http://arxiv.org/abs/hep-th/0402045
http://jhep.sissa.it/stdsearch?paper=04%282004%29056
http://arxiv.org/abs/hep-th/0403187
http://arxiv.org/abs/hep-th/0404255
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB598%2C113
http://arxiv.org/abs/hep-th/0406179
http://jhep.sissa.it/stdsearch?paper=07%282006%29005
http://arxiv.org/abs/hep-th/0604037
http://arxiv.org/abs/hep-th/0606272
http://arxiv.org/abs/hep-th/0703054
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C9%2C931
http://arxiv.org/abs/hep-th/0405123
http://arxiv.org/abs/hep-th/0608225


J
H
E
P
0
6
(
2
0
0
7
)
0
6
5

[42] C. Saemann, Aspects of twistor geometry and supersymmetric field theories within superstring

theory, hep-th/0603098;

M. Wolf, On supertwistor geometry and integrability in super gauge theory, hep-th/0611013.

[43] A. Neitzke and C. Vafa, N = 2 strings and the twistorial Calabi-Yau, hep-th/0402128.

[44] D.-W. Chiou, O.J. Ganor, Y.P. Hong, B.S. Kim and I. Mitra, Massless and massive three

dimensional super Yang-Mills theory and mini-twistor string theory, Phys. Rev. D 71 (2005)

125016 [hep-th/0502076];

D.-W. Chiou, O.J. Ganor and B.S. Kim, A deformation of twistor space and a chiral mass

term in N = 4 super Yang-Mills theory, JHEP 03 (2006) 027 [hep-th/0512242].

[45] A.D. Popov, C. Saemann and M. Wolf, The topological B-model on a mini-supertwistor space

and supersymmetric Bogomolny monopole equations, JHEP 10 (2005) 058 [hep-th/0505161].

[46] C. Saemann, On the mini-superambitwistor space and N = 8 super Yang-Mills theory,

hep-th/0508137; The mini-superambitwistor space, hep-th/0511251.

[47] A.D. Popov, Sigma models with N = 8 supersymmetries in 2 + 1 and 1 + 1 dimensions, Phys.

Lett. B 647 (2007) 509 [hep-th/0702106].

[48] C. Devchand and V. Ogievetsky, Interacting fields of arbitrary spin and N > 4

supersymmetric self-dual Yang-Mills equations, Nucl. Phys. B 481 (1996) 188

[hep-th/9606027].

[49] N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. 67 (Proc. Suppl.) (1998) 158

[hep-th/9705117].

[50] A. Konechny and A.S. Schwarz, Introduction to M(atrix) theory and noncommutative

geometry, Phys. Rept. 360 (2002) 353 [hep-th/0012145] [hep-th/0107251];

M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001)

977 [hep-th/0106048];

R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207

[hep-th/0109162].

[51] L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in the theory of solitons, Springer,

Berlin (1987).

[52] B. Zumino, Supersymmetry and Kähler manifolds, Phys. Lett. B 87 (1979) 203.
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